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The density functional theory of atomic electrons in strong magnetic fields is 
generalized to finite-temperature systems. General integral formulations are 
developed in the format of Mermin-Kohn Sham finite-temperature density 
functional theory. The lowest order of the general theory leads to a temperature- 
dependent extended Thomas-Fermi (TETF)-like functional, which is simple 
enough to be analyzed. The general theory provides a new way of calculating 
the equilibrium properties of many-electron systems in strong magnetic fields. 
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1. I N T R O D U C T I O N  

Atoms in strong magnetic fields (1 s) have obvious importance in studying 
the atmospheres of neutron stars. In the deep atmosphere of a neutron star, 
temperature effects are not negligible even though they have little effect on 
total atomic energies. Thus, when the temperature gets to the order of the 
lowest excitation energy, finite-temperature statistical models are needed. 
And when temperature is not small compared to lowest ionization energy, 
the electrons must be studied in terms of a grand canonical ensemble. The 
generalized Hohenberg Kohn theorem (6) appropriate to such a system has 
a long history, presented in various forms by Gibbs and von Neumann, 
Mermin, (7) Stillinger and Buff,(8) Lebowitz and Percus,(9) and others. It sets 
up a density functional theory (DFT) for finite-temperature ensembles, in 
which the thermal properties of the interacting many-electron system are 
uniquely determined by the electron density which minimizes a grand 
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canonical potential density functional. Whereas the original MKS 
(Mermin-Kohn-Sham) scheme (1~ relied on solving a set of self-consistent 
equations, as in the ground-state DFT, the finite-temperature approach 
proposed by Brack in his temperature-dependent extended Thomas-Fermi 
(TETF) (11'12) approach has recently been used by Yang (13) to construct an 
integral formulation of DFT. In the present paper, we use the same 
approach to generalize the ground-state DFT of atoms in strong magnetic 
fields (14) to finite temperature. A semiclassical approximation for the 
required Green's function results in a TETF-like density functional, a 
simple and practical tool. We also make the convenient, but not necessary, 
simplification that in high magnetic field, the electrons can be considered 
as spinless fermions. We conclude by describing the use of a many-interval 
discretized propagator, displaying a new method for accurate calculation of 
thermal properties of many-electron systems in strong magnetic fields. 

2. M E R M I N - K O H N - S H A M  D E N S I T Y  F U N C T I O N A L  

Consider a many-electron Hamiltonian H. The grand canonical poten- 
tial of the system is given by (a.u. throughout) 

f2 = Min Tr F ( H - - # N +  ~ In F) (1) 
F 

where F is the grand canonical density matrix operator having the 
minimizing value 

IF = e ( n -  u N ) / V T  r e ( H -  ttN)/~: (2) 

Here,/~ is the chemical potential and r the temperature in energy units. The 
electron density is obtained from F as 

pr(x) =Tr  gt*(x) 7t(x)F (3). 

where ~ut and ~ are the usual electron field operators. Denoting the kinetic 
energy operator by K, the internal Coulomb energy by (b, and restricting 
attention for the moment to an external potential u(x), we can write (1) as 

Q = Min ~ [ p ]  
p 

where 

t 2 [p ]=  Min T r F ( K + q S + r l n F ) + f  [ u ( x ) - # ] p ( x ) d x  (4) 
[FFpF=p] 
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In the MKS model, (7) one makes the following assumption: 
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f, 
~[p]  = o,[p]  + J [u (x ) -  #] p(x) d x  

1 r p(xl)  p(x2) dxl dx2  + Y~[p]  (5) 
J l-Z1--x2  

where Gs is the Helmholtz free energy of the auxiliary noninteracting 
system of Hamiltonian K, and ~xc is an appropriate exchange-correlation 
functional. Minimizing Eq. (5) leads to a set of self-consistent equations for 
the KS eigenstates ~ :  

(Hks - Ei) tpi = 0 (6) 

1 V2 + ue/(x) (7) Hks = _ 

b/ef(X ) ~---- b/(X) "~ J I x - -  Xt[ -[- Op(X---~ (8 )  

in terms of which the finite-temperature one-body density matrix and 
density can then be constructed explicitly, 

7(x, x'; ~)= ~ ~b,(x) #Ji*(x')f,(#- E,), p(x) = 7(x, x) (9) 
i 

where f ,  is the Fermi function, 

f d # -  Ei) = 1/(1 + e (~ E,)/,) 10) 

Then the Helmholtz free energy is given by 

Gs[p ] = Ts[p  ] - "cS~[p ] 11) 

with the kinetic energy and entropy functionals 

T s [ p ]  = f t,(x) dx 

1 ~) 
t~(x) = ~ V~.V~,7(x, x'; 12) 

I x ' = x  

S~ = - ~  [f~ lnf~ + (1 - f ~ )  ln(1 - f ~ ) ]  13) 
i 

The diagonal elements of 7(x, x'; ~) yield the one-body density p(x). 
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3. T H E  T E T F - L I K E  D E N S I T Y  F U N C T I O N A L  

We now introduce a magnetic field. The KS Hamiltonian for an 
atomic electron in a constant external magnetic field B in the z direction 
is 

1 V2 BI B2 
Hks'= --2 + 2 z +-8  (x2 + y2) + u~f(x) (14) 

" r) in the form In order to avoid the KS orbitals, we rewrite 7(x, x ,  

v(x, x'; ~)= (xl L(u-H,s,)Ix') (15) 

If we express the Fermi function by a two-sided inverse Laplace transform, 
the following relationship can be established(12): 

7 ( x , x ' ; ~ ) = 2 '  11 ~ z r f l  G(x,x ' ; f l )  (16) 
fl sin rcr/~ 

G(x, x';/3) = (xl exp(-firths,) Ix')  (17) 

where G is the one-electron Green's function. Accordingly, the entropy 
functional can also be expressed in terms of the Green's function 

Ss[p3=~(x)dx, a(x )=~A(x ,  x; ~) 

1 7cz 
A(x, x'; ~) = 5r fi sinprcr ~ G(x, x'; fl) 

(18) 

It should be noted that the above relations are an exact transcription of (9) 
and (10). We now replace the exact Green's function by its semiclassical 
approximation. (14) Here, we take the known (UeS = 0) Green's function as 
reference in the Feynman-Kac path integral expression, and keep only up 
to first order in fl in the exponent. This results in 

1 ap 
Gsc(x, x'; f l )= {exp[ia(xy'-  yx') ] } (2nfl)3/2 sinh aft 

xexp - ( x -  x ' ) 2 - f l  UeS(X'+(x-x ') t )dt  

~ a [ ( x -  x')2 + ( y -  y') 2] (19) 
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where a=B/2.  The corresponding one-body density and the kinetic 
functional are given by 

21/2~7 3/2 

p(x) = Cr Cr -- 21.C 2 (20) 

and 

1 
G.(x)= C~ rF3/2(Z)- ~-~r-IF_I/2(z) V2uet 

1 82 1F ! 
32 r 2F3/2(Z)IVur 1/2()~) (21) 

where, throughout, Z -  [#-ue i (x) ] /~  is defined by Eq. (20), and F~ is the 
Fermi-Dirac function 

f ~  t ~ F~(x) = 1 +e ' - ; d t  (~> - 1 )  (22) 

1 d 
F ~ ( x ) = - - - - F ~ + I ( x )  (c~# -1 )  (23) 

cr + l dx 

If ~ < -1 ,  where the integral (22) is divergent, the recursion relation (23) 
must be used as the definition of F~(x). ~ In the derivation, we have 
replaced V in Eq. (12) by V + iA, and kept only the leading order in/3. In 
order to eliminate the gradients of uef(x ) from the above expression, we use 
the relations 

iVUefl2__ 4"C2 F1/2 IVp] 2 (24) 
C~ F~1/2 P 

C,F 1/'2 F--,/2 

which stem from Eq. (20). Combination of Eqs. (21), (24), and (25) results 
in a TETF-like kinetic functional 

a 2 

G.(x) = tTv(X) + tw(X) + 1 V2 p + 9-6 C~r- ~ F  ~/2 (26) 

with 

!Vp[ 2 
tTv(x) = C~ rF3/> tw(X ) = ~c (27) 

P 
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where 

1 FI/2F_3/2 l 0 1 (28) 
~C-- 24 F2 ~/2 ~ Fm c~x F_~/2(Z) 

Similarly, replacing G by G,c in Eq. (18) leads to the results 

3• 5 
as~(x) = A,~(x, X; "t') =~ C.cF3/2 --fix (29) 

Combining Eqs. (5), (11), (26), and (29), we obtain the grand canonical 
potential functional 

2 B 2 
"Q[Pl = - ~  TTvEP]+ rwEP]+-~C~- '  f F-,/2dx + ~ f PZ dx 

+ f [u(x)-i~]p(x)dx +~f  p(xl)p(x=) ' T~Zx2- ] axl dx2 + ~ [ p ]  (30) 

with 

rT~Ep] = f tTF(~) d~, rWEp]=f tW(~)d~ (31) 

Minimizing (30), we have as well the Euler profile equation 

2 dF3/2 V2p 1/2 IVp[ 2 d~c B 2 dF 
- 3 C ~ r T p  -4~c ,01/2 p dp ~-~ C'c'c-1 do1~2 

+u(x)+rd(px)+(  p(x') dx' 6~cEp] 
dp J I x - x ' l  + 3p /~ (32) 

We have used the fact that F~()) is a function of electron density p(x), 
which is clear from Eq. (20). With the help of the following asymptotic 
expansion of F~(Z), (15) 

1 [ ] 
F=(Z) = U ~ i - z  ~+1 1 + ~ ( ~ + 1 ) T X - 2 +  ... (g~ l) (33) 

it is easy to show that Eqs. (30) and (32) reduce to the energy functional 
(26) and the profile equation (28) of ref. 14, respectively, in the limit of 
r--, 0. It is also interesting to study another limit, B ~ 0. Because of the 
simple coupling with the magnetic field in Eqs. (30) and (32), taking the 
limit means dropping the terms in B in both equations. It turns out that 
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the grand potential functional, after dropping the magnetic terms, is exactly 
the same as that obtained by Perrot, which is slightly different from the 
Brack's result. From the minimized grand canonical potential, all the equi- 
librium properties can be determined. As discussed for the ground-state 
case, (~4) the range of validity of B in the above functional needs to be 
checked because of the "short-time" approximation to the Green's function. 

4. M U L T I D I M E N S I O N A L  INTEGRAL F O R M U L A T I O N  

The semiclassical approximation of the Green's function can be 
systematicly improved by the discretized propagator approach developed 
by Handler, d6) Harris and Pratt, (17) and other authors. The exact Green's 
function defined by Eq. (17) can be well approximated by the multi-interval 
discretized propagator formulation (~4) (where the known factor afl/sinh aft 
can be recognized and removed at any stage) 

/ El \ 3n/2 n -- 1 ] 
f dx ...dxo ,expFi Z b0(m+' m) ] 

xexp - (Xm+l--Xm) 2--fi u (m+ l ,m)  
0 n m = o  

n--1 1 fl ~ b,(m+ 1, m) (34) 
E l m = O  

where u(m + 1, m), bo(m + 1, m), and bl(m 4- 1, m) are defined by 

l *  1 

u(m + 1, m) = Jo blef(Xm -[- ( X m +  i - -  Xm)t) dt (35) 

bo(m+ I, m)=a(x,~+tym-- y,~+iXm) (36) 
a 2 

b l (m+l ,m)=-~[ ( xm+a-xm)2+(y ,~ + ~ -ym)  2] (37) 

The boundary conditions x o = x' and x~ = x are combined with Eq. (34). It 
has been shown that Gn converges to G as n goes to infinity. Using Gn in 
Eqs. (16) and (18) leads to the expressions 

[ n~ \ 3n/2 
j ,x,. . . ,xo_, 

x exp i ~ bo(m+ 1, m) D3,/2(k~/2r, l~r/2) (38) 
m = 0  
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El'F, ~ 3n/2 
A,,(x, x'; "c) = "c \ ~ j  f d x l . . ' d x ,  I 

x exp i 
m = 0  

bo(m + 1, m ) l }  D3n/2 + l(k]/2"C, 12"c/2) 

where D~ is defined by (13) 

D~(x, y) = 5~ -1 n e y/~ 
fi~ sin nfl 

3 
~x D=(x, y) = D~_ l(X, y), 

0 
7- D~(x, y) = -D~  + l(x, y) 
oy 

(39) 

(40) 

with 

!.E, 1 o l  ] 
k ~ = 2  # -  u ( m + l , m ) - -  ~ b l ( m + l , m )  (41) 

n m =  0 E l m =  0 

n 1 

12 = n ~ (xm + 1  - -  Xm) 2 (42) 
m = 0  

The diagonal element of 7~ gives the electron density 

pn(x) = p~Euer(X); x, B, z] (43) 

which is an explicit functional of ues(x) with the magnetic field B and the 
temperature ~ as parameters. The kinetic functional 6(x)  is given by 

1 "C) x ' =  tn(x ) = ~  (V x + iA).  (V x, + iA') ?n(x, x'; 
x 

= 6[uey(x); x, B, ~] (44) 

Direct calculation of 6(x)  is elementary, but very tedious. We use instead 
the identity 

t'(x) = [# - u~f(x)] p(x) + ra(x) - A(x, x; r) (45) 

for an indirect calculation. It is believed that both t n and t'n converge to an 
exact kinetic functional as n ~ ~ .  The corresponding entropy is 

~ n ( x )  = \~/  

k~ I~T +2] • I ( ' ~  + 1)D3n/2+1 ~,D3~/2- -TD3~/2  (46) 
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We have used the differential recursion relations (40) in the calculation of 
the entropy. The Helmholtz free energy is given by 

G~[p] = f d x  [t ' ,(x) -- van(x)] 

= f dx { [ # -  u4(x ) ]  p , (x)  - Am(x, x; z)} (47) 

By solving the self-consistant equations (8) and (43), we can obtain p,, 
and u~r, then t,, and an, and all other thermal properties can be uniquely 
determined by p,,. 

5. C O N C L U D I N G  R E M A R K S  

A new TETF-like density functional model for atoms in magnetic 
fields is created through the semiclassical approximation of the Green's 
function. The integral formulation of D F T  proposed for ground-state 
atoms in strong magnetic fields has been generalized to finite temperatures. 
The so-called better short-time expansion of the one-body Green's func- 
tion, known mainly through the work of Fujiwara et al., (18) is easily accom- 
plished in the integral formulation of the last section. It is expected that the 
integral formulation will provide an efficient way of calculating the thermal 
properties of atoms in strong magnetic fields. 
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